
LA-UR-15-25035 (Accepted Manuscript)

Software Resilience and the Effectiveness of Software Mitigation in
Microcontrollers

Quinn, Heather Marie
Fairbanks, Thomas D.
Tripp, Justin Leonard
Duran Il, Melvin G.

Provided by the author(s) and the Los Alamos National Laboratory (2016-09-27).

To be published in: IEEE Transactions on Nuclear Science

DOI to publisher's version: 10.1109/TNS.2015.2496342

Permalink to record: http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-15-25035

Disclaimer:
Approved for public release. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos
National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the
Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

1

Software Resilience and the Effectiveness of
Software Mitigation in Microcontrollers

Heather Quinn, Zachary Baker, Tom Fairbanks, Justin L. Tripp, George Duran

Abstract—Commercially available microprocessors could be
useful to the space community for non-critical computations.
There are many possible components that are smaller, lower-
power and less expensive than traditional radiation-hardened
microprocessors. Many commercial microprocessors have issues
with single-event effects (SEEs), such as single-event upsets
(SEUs) and single-event transients (SETs), that can cause the
microprocessor to calculate an incorrect result or crash. In this
paper we present the Trikaya technique for masking SEUs and
SETs through software mitigation techniques. Test results show
that this technique can be very effective at masking errors,
making it possible to fly these microprocessors for a variety of
missions.

Index Terms—soft errors, software, software fault diagnosis,
software fault tolerance

I. INTRODUCTION

While most spacecraft rely on radiation-hardened micro-
processors for on-board processing, there are many reasons
why using commercially available microprocessors might be
beneficial. Many commercial microprocessors are cheaper,
smaller, faster and take less power than traditional radiation-
hardened microprocessors. Not all of the spacecraft’s com-
putation requires a radiation-hardened microprocessor, such
as configuration, monitoring and background tasks. If the
non-mission critical tasks are completed on a secondary mi-
croprocessor, the space-grade microprocessor can be devoted
to mission critical processing so that more mission data is
processed in-situ.

There are a number of commercial microprocessors that
could be useful to the space community. In particular, a num-
ber of microcontrollers and ARMs have non-volatile memory
that the microprocessor uses to self host, which means the
microprocessor initializes and starts its program once powered.
Many of these microprocessors have useful peripherals, such
as analog-to-digital converters, comparators and digital-to-
analog converters. In previous research, we have presented
information on a number of microprocessors that do not have
sensitivities to single-event latchup (SEL) and can tolerate
a multiple-year mission [1]–[3]. In this paper, we focus on
the Texas Instruments (TI) MSP430 microcontrollers and two
ARMs.

SEEs can have a complex effect on a microprocessor,
especially commercially available microprocessors that are not
designed for high radiation environments. During our previous

H. Quinn, Z. Baker, T. Fairbanks, J. Tripp and G. Duran are with
Los Alamos National Laboratory, Los Alamos, NM, 87545 USA, e-mail:
hquinn@lanl.gov

work on digital signal processors (DSPs), we created a taxon-
omy of effects from SEUs that is useful for microprocessors.
This taxonomy, shown in Fig. 1, breaks down how SEUs
can corrupt all forms of on-chip memory: caches, SRAM
structures, and registers. SEUs can also corrupt memory in
control logic and peripherals. SEUs in microcontrollers often
have greater consequence in these components, as most mem-
ory structures lack error-correcting codes. Likewise, latched
SETs could cause corruption in register values, control logic
and peripherals. These SEUs and latched SETs can cause
data and instruction corruption, which can lead to silent
data corruption (SDC), wrong instruction execution, incorrect
branches, incorrect jumps, program exceptions, and program
crashes. Program crashes are commonly categorized by SEFIs,
although the exact root cause of crashes is not well understood.

For the past few years we have been studying whether the
effects of SEFIs, SEUs and SETs could be masked through
software mitigation [4]. The idea is to alter the software so that
corruption of individual data variables and instructions could
happen without the calculation being corrupted. Techniques,
such as triple modular redundancy (TMR), are generally
applicable to most systems, including software. Furthermore,
the mitigation process can be automated so that modifications
could be made without expert knowledge of the algorithms.
The results from these tests using hand-mitigated software
have been successful [4]. We are in the process of refining our
technique and designing an automated tool, called Trikaya.

This paper is organized as follows. Section II presents other
methods for suppressing or masking SEUs or SETs in micro-
processors. The Trikaya method is presented in Section III.
The experimental setup from testing the Trikaya method are
presented in Section IV. Performance results are presented in
Section V. Radiation test results are presented in Section VI.

II. RELATED WORK

There are a number of software-based techniques for
increasing the robustness of microprocessor-based systems.
Many of these are solutions that only work for certain types
of algorithms, such as dynamic programming, approximate,
matrix, or self-adapting [5]–[18]. There are also methods that
work specifically with control flow or datapaths. We will
discuss these methods in this section.

One of the most common forms of mitigation is algorithm-
based fault tolerance (ABFT). It is common to use ABFT on
matrix operations. One of the earliest and most common tech-
niques is to place checksums on the rows and columns on the
result matrix [8]. This method adds one column and one row to

2

Fig. 1. Taxonomy of how SEUs affect microprocessors and DSPs [4]

result matrix, as well as the necessary computation needed to
calculate the checksum for each column and row. Others have
created ABFT methods for sparse [9] or dense [10] matrices.
ABFT can be applied to many types of algorithms. In [5]
the authors provide a technique to increase the robustness of
dynamic programming algorithms using outlier detection. A
novel system by [11] takes the standard self-adapting software
system framework and adapts it for resilience so the system
monitors itself for changes. When the system finds non-
operational or faulty modules, a plan for working around the
faulty portions can be developed and executed by the system.
A similar technique is used in [12].

In [6], the authors explore the intrinsic resilience of approx-
imate algorithms, which use heuristic solvers. [6] discusses
the possibility of using more resilient approximate solutions
to increase system robustness, decrease power consumption
and increase execution speed. [7] combines approximate com-
puting with light-weight checking under the assumption that
checking for a correct answer is less computationally complex
than the actual computation. With this method, the checker
determines whether the calculation meets the necessary quality
of solution and recalculates as necessary.

There are also a number of methods for mitigating data
integrity or control flow errors. Many of these systems are
rule-based transformations of the software at very low-levels,
such as block statements. For example, in [13], the authors
transform the software to have test assertions to make certain
the transitions between blocks is valid and setting signatures
in the block. These types of transformations are common
to prevent control flow errors [15]–[17]. Other transforma-
tions can insert low-level duplication with compare (DWC)
instructions to protect data variables from SEUs [14]. In [18],
the authors warn that there are limitations to these types
of software transformation. These authors determined that
transformations based on DWC and inverted branch techniques
are very effective, but that software signatures are not. Trikaya

implements data protections similar to DWC, as the primary
problem in these microcontrollers is SEUs in the program’s
data. Currently, control flow errors are not mitigated as it is a
secondary problem.

While the possibility of using self-healing and approximate
systems might be useful for spacecrafts, these approaches
currently do not meet mission requirements for many systems.
Furthermore, many of these techniques have not been tested
in radiation environments and have unknown effectiveness.
In creating the Trikaya technique, we wanted to create a
technique that would work on variety of algorithms without
expert knowledge of the algorithm or the data. In this sense,
we are interested in determining what the most vulnerable
data variables and functions are so that these objects can be
protected through software mitigation. We are also designing
the tool based on our experience in testing microprocessors
with a variety of software codes, including several tests
with hand-mitigated codes. To this end, we feel the Trikaya
technique can be widely applied to a number of different
systems, different algorithms and different environments.

III. TRIKAYA TECHNIQUE

The Trikaya technique is based on spatial and tempo-
ral TMR. The calculation is made spatially redundant by
triplicating the program’s variables and is made temporally
redundant by triplicating the execution of the mitigated sub-
routine. By executing the sub-routine multiple times with
separate variables, it is possible to correct SEUs and SETs
that cause corrupted calculations. The correction process is
handled with majority voting. An overview of the changes to
the program structure is shown in Fig. 2. While not shown in
Fig. 2, we have also added peripheral scrubbing as part of the
process to reduce issues with SEUs in the peripherals. In this
section, information about the modification of the software,
the automation process and the limitations to the technique
are presented.

3

Fig. 2. Trikaya technique for applying full mitigation to a single algorithm
in a software program

In these early stages, we are focusing on a coarse-grained
and full mitigation of algorithms and proving out these tech-
niques with radiation testing. Coarse-grained modules mitigate
entire sub-routines, instead of individual instructions. Full
mitigation also focuses on correcting all errors that occur,
instead of focusing on the most vulnerable instructions and
data variables.

In the future, we plan to move to finer-grained and partial
mitigation techniques to reduce the amount of data duplication
and execution overhead needed. DWC would be more time and
memory efficient than TMR. By providing a wide range of
mitigation approaches, the user will be able to determine how
much mitigation is needed to meet their mission requirements.

A. Mitigation Process

The automated tool that inserts the data and instruction
replication, the software voter and the peripheral scrubber as
part of the compilation process. Trikaya uses an open-source
compiler, LLVM1, as a foundation [19]. After the source code
is optimized and before writing out machine code, LLVM
provides an intermediate representation (IR) of the optimized
source code [20]. The IR has several usages, including being
a “human readable assembly language representation” that is
capable of representing most languages [20]. Because it is
a language of its own, it possible to transform the IR by
inserting, deleting and altering instructions. We are particularly
interested in the ability to transform the IR between the
optimization and machine code stage of the compiler so that
mitigation can be inserted.

Because we are currently focused on coarse-grained and
full mitigation of sub-routines, the changes to the program are
minor:

1LLVM is not an acronym.

int voter (int &val0, int &val1, int &val2) {
// detect error condition
if ((val0 != val1) || (val0 != val2) || (val1 != val2)) {

// find and correct error
if (val0 == val1) { // val2 is erroneous

val2 = val0 ;
return 0;}

else if (val0 == val2) { // val1 is erroneous
val1 = val0 ;
return 0;}

else if (val1 == val2) { // val0 is erroneous
val0 = val1 ;
return 0;}

else { // 3 errors ; return error state
return 1;} } }

Fig. 3. Software voter in C

• Insertion of the replicated input and output variables;
• Insertion of the majority voter code;
• Insertion of the peripheral scrubbing code; and
• Insertion of the code to trigger multiple executions of the

sub-routine, majority voting and peripheral scrubbing.
Issues with program structure are not addressed at a coarse
grain, so it is not necessary to address issues with incorrect
data causing problems with looping, branching or jumping.

One of the key program changes is the insertion of the voter.
Voting is an important part of the mitigation process, as it
protects the calculation. In Trikaya, voting is also handled in
software. A C-language version of the software voter is shown
in Fig. 3. Software voters are hindered in part by the lack of a
three-way comparison. Detecting an error can take five to eight
instructions, depending on whether the values are already in
registers. Correction is also slow, as the majority value needs to
be determined and the minority variable identified. The return
codes can be monitored to determine if the voter fails, which
then triggers a reset of the system.

We have also found that peripheral scrubbing can be helpful
for many microcontrollers and add scrubbers to the mitigated
code. For many of the microcontrollers the peripherals are
configured through the use of registers. Hundreds of 32-bit
wide registers are used to determine the functionality of all the
peripherals. All of these registers are SEU sensitive, which can
cause the peripherals to perform erratically. As these peripher-
als control the timers, watchdogs, data input and data output,
failures in these peripherals can be disruptive. Furthermore,
these failures, like many other types of SEFIs, cannot be
self detected. Therefore, it can take external monitoring to
determine that the peripheral is malfunctioning. We have found
that blind scrubbing of the peripherals by re-initializing the
peripherals at regular intervals can minimize how long the
disruptions take and automatically reset the peripheral.

B. Limitations of Trikaya

Even with mitigation, some failures could still occur. It is
also possible that multiple-independent upsets could accumu-
late on the component and overwhelm the mitigation tech-
nique. Constants can be an issue with the coarse-granularity
approach, as these variables are not mitigated. We discuss both
of these issues below.

4

Fig. 4. Probability that two variables have errors caused by two SEUs in the
system as a function of the number of words in the variable

1) Multiple-Independent Upsets: Generally speaking, most
forms of TMR are only guaranteed to mask a single error in
the system. Therefore, an accumulation of SEUs could cause
the mitigated software to fail. For Trikaya that means there
cannot be more than one SEU in a set of variables. If the
same variable has errors in two redundant copies, the voter
will fail to correct the errors.

The probability that two upsets can affect multiple copies
of the same variable is based on the probability that two re-
dundant variables can be corrupted. If each redundant variable
has n words in a memory of m words, the probability of a
TMR failure is defined as:

P (TMR Failure) =

(
3n

m

)(
2n

m

)
(1)

Fig. 4 shows the probability of TMR failures based on the
number of words being triplicated in a memory of 1,000
words. In cases where only a few words are triplicated, the
probability of the two upsets being in two of three of the
replicas is unlikely. As the number of words increases, the
probability of the upsets affecting two replicas increases. As
a general rule of thumb, the execution speed of the triplicated
algorithm must be faster than two times the upset rate so that
it is improbable that two sets of replicated data variables are
not affected.

2) Constants: In coarse-grained mitigation, the input and
output variables are triplicated, but the variables within the
sub-routine are not. The primary advantage of this approach is
to minimize the increase in the size of the code’s variables. It is
possible that SEUs in the algorithm’s internal variables could
affect the computation of the algorithm. The volatile variables
will be reinitialized during the next execution of the algorithm,
so the effect is limited in scope and corrected through the ma-
jority voting process. SEUs in constants, though, could affect
multiple executions, because the constants are not reinitialized.

The probability of the constants having an upset scales
by the percentage of the memory dedicated to constants.
Therefore, if constants comprise 10% of the memory, then
it is possible that 10% of the SEUs will affect constants. One

way to avoid these types of failures would be to include these
constants as input values to the algorithm so the constants
are triplicated. Once triplicated, the constants will follow the
same conditional probability for TMR failures. In the case
where constants are 10% of the memory, the probability that
a constant fails decreases to 6% if replicated.

IV. EXPERIMENTAL SETUP

As the tool is currently not ready for testing, we are focused
on radiation and performance testing of the hand-mitigated
version of the full-mitigation technique. In this section we
will provide information about the test setup and tests.

In December 2014 and January 2015, we tested
the Trikaya technique on four components: TI flash-
based MSP430 (MSP430F2619), TI FeRAM-based MSP430
(MSP430FR5739), TI Tiva, and Xilinx Zynq ARM. All of the
radiation results were collected at the Los Alamos Neutron
Science Center (LANSCE) Irradiation of Chips and Elec-
tronics (ICE) House I and II flight paths. A picture of the
December 2014 test setup at LANSCE is shown in Fig 5.

The hardware setup is the same as the setup we used in
previous microcontroller tests [1]. The test board is attached
to a computer via Universal Serial Bus (USB) cables to a
Joint Test Action Group (JTAG) programmer and a Future
Technology Devices International (FTDI) device. The FTDI
device connnects to the component’s Universal Asynchronous
Receiver/Transmitter (UART) and converts serial to USB so
that status messages can be monitored in real time and stored
on the computer for later analysis. The JTAG programmer
is connected to the test board and can write directly to
the component’s SRAM or non-volatile memory. The JTAG
programmer for the TI components writes to the non-volatile
memory and the components self-boot when power cycled or
reset. The JTAG programmer for the Zynq component writes to
the SRAM memory and the component has to be programmed
when power cycled or reset. In both cases, programming the
codes to the memory is controlled by instrumentation software
on the computer. The boards are independently biased at
nominal voltages, are at nominal temperature and are at a
normal incidence to the beam.

The software codes we use for testing the components is
based on the benchmark that has been developed for radiation
testing [21]. We implement these codes from the benchmark:
AES-128 with NIST test vectors, Cache Test, Matrix Multiply
(MxM) and Quicksort (Qsort). The size of these applications
is purposefully kept as similar as possible. All of these
codes are mitigated using the Trikaya technique. For testing
purposes, the UART peripheral is scrubbed in both mitigated
and unmitigated codes to decrease test interruptions from
SEUs in the UART registers. Only a portion of the NIST test
vector suite is able to fit into the TI FeRAM’s non-volatile
memory at a time.

The statistical design of the test has a Latin Squares
construct [22]. This construct is useful for tests where one
component will be tested with a variety of software programs.
The Latin Square methodology transitions the test from one
program to the next in an infinite loop so that each program

5

Fig. 5. Picture of LANSCE Test. The tests in this paper are numbered 1-3.

TABLE I
INCREASE IN THE SIZE IN THE VARIABLES, INSTRUCTIONS AND

EXECUTION TIME FOR MITIGATED SOFTWARE

Processor Program Variables Instructions Time

MSP430F2619

AES 1.01 1.53 3.29

Cache 2.74 1.26 8.04

MxM 1.07 2.40 2.44

Qsort 1.35 1.44 2.37

MSP430FR5739

AES 1.14 1.44 3.28

Cache 2.40 1.26 79.11

MxM 2.07 1.42 1.46

Qsort 2.43 1.31 1.48

T iva

AES 1.00 1.33 2.78

Cache 2.99 1.24 6.57

MxM 2.66 1.28 2.03

Qsort 2.80 1.33 2.92

Zynq

AES 1.01 1.04 2.68

Cache 1.00 1.02 983.22

MxM 1.05 1.05 1.34

Qsort 1.05 1.03 1.39

is executed for the same amount of time. The Latin Squares
setup is implemented in a python script, which also transfers
the codes to the components.

Performance testing was completed on the bench to deter-
mine the effect of the mitigation process on execution speed,
power consumption and program size. All of the algorithms
were measured for changes in overhead. The execution time
was determined by the number of completed tests within
two minutes. The current consumption was measured on a
programmable power supply with the exception of the Zynq.
Power consumption could not be measured on the Zynq test
fixture. The changes to program sizes were determined by
examining the compiled codes.

V. PERFORMANCE TESTS

Table I lists the overhead incurred by applying Trikaya,
including changes to the amount of memory used for variables
and instructions; and changes to the execution time and power
consumption. It is expected that the memory for data could

increase by three times and the execution speed could decrease
by three times.

The impact of triplicating the input and output variables
is less than triplicating all of the variables. In several cases,
the triplicated variables are only a small portion of the total
memory used for variables. For the AES code, only five
128-bit values are triplicated, so the increase in memory
for the triplicated variables is very small for each AES
implementation. For the other three codes, though, arrays
and matrices are triplicated, which caused the memory used
for variables to increase by as much as 2.99 times in the
Texas Instruments components. The increase in the memory
for triplicated variables in the Zynq is much smaller than the
other microcontrollers. The Zynq has more global variables
than the other components, and explicitly includes the heap as
a global variable.

There is also an impact to the amount of memory used for
the code, as redundant executions, the voter and the peripheral
scrubber are inserted in the code. In general, most of the
text sections, where the instructions are defined, increased by
400 to 1500 words for the Texas Instruments components and
by 1400 to 4800 words for the Zynq. When the increase is
compared with the base codes, many of these increases are
small. For the Texas Instruments components, the increase in
the memory for the instructions is 1.26 to 2.40 times. The
comparative increase for the Zynq is much smaller than the
MSP430s and is between 2–5%. As the base code for the Zynq
is 30-40 times larger than the MSP430 codes, the insertion of
the extra instructions is less noticeable.

As the mitigated codes are executing the code three times
and voting, the execution time of the sub-routine should in-
crease by at least three times. The execution time for the AES
code did increase 2.7 to 3.3 times. For MxM and Qsort the
increase is between 1.35 to 2.44 times. Cache Test increased
by 6-1000 times, depending on the microcontroller. In this
case, though, the unmitigated code communicated only error
conditions to the computer, whereas the mitigated code sends
a constant stream of status messages to the computer. When
we equalized the printing, the execution time increased by
only 3.5 times. Furthermore, printing is generally consuming
a lot of execution time, which masks some of the increased
execution time. When most of the printing is removed from
MxM on the Tiva, the codes ran 2.27 to 3.0 times faster. When
the mitigated and unmitigated codes with limited printing are

6

Fig. 6. Cross Sections with 95% confidence intervals for both MSP430s

compared, the mitigated code is 2.89 times slower than the
unmitigated code. From this analysis, much of the execution
time is spent printing output rather than computing.

Finally, we analyzed the power consumption of the Texas
Instruments components, which are independently biased
through programmable power supplies that allow for current
monitoring. For the two MSP430s, there is no difference in the
current for any of the codes. For the MSP430FR5739, all codes
had a current consumption of 0.0003A. For the MSP430F2619,
the current consumption is less than 0.0001A, making it
unmeasurable. For the Tiva there are small differences between
the codes. The AES code consumed the least current at
0.014A; MxM consumed the most at 0.0019A. The mitigated
codes are generally within ± 0.0001A of the unmitigated
codes. It is also clear that the current consumption drops
during printing.

In summary, the size of the code, the size of the data and
the execution time increased due to the mitigation process.
While we expected the data size and the execution time to
increase at least three times, many of the codes out-performed
our expectations. In many cases, when the size of the base code
and data are taken into account, the mitigation process is only
affecting a small portion of the code and reduces the overall
effect of increasing the code size. Finally, status messages,
which are an important part of the testing process, need to be
examined, as the printf code can impact the amount of time
executing the test code.

VI. EXPERIMENTAL TESTS OF THE FULL MITIGATION
TECHNIQUE

In this section we discuss the efficacy of the mitigation
technique, mitigating SEFIs and the root causes of software
failures based on the algorithm. Results from these tests are
shown in Figs 6 and 7. It should be noted that many of
the unmitigated codes, except AES, were designed to fill
the SRAM structures completely. In these cases, the size of
the matrices and the arrays used in the unmitigated codes is
several times larger than the mitigated codes. For comparison,
we scaled the unmitigated codes to be the same size of the

Fig. 7. Cross Sections with 95% confidence intervals for the Tiva and Zynq
ARMs

mitigated code to measure the change in the execution times
and memory usage. We scaled the unmitigated cross sections
by the difference in memory size, so that a direct comparison
could be made.

A. Sensitivity to Output Errors

The mitigation technique is working on many fronts. The
cross sections in Figs 6 and 7 are a measurement of the failures
in both the unmitigated and mitigated software for the four
codes tested. For the mitigated software, this measurement is
of the failures that are not correctable. Many of the mitigated
codes had no failures. In these cases, the data point is placed at

1
fluence and the lower error bar is zero, which is represented
as a downward arrow. It can be difficult to compare these
data sets due to the number of null data points. In some of
these cases, such as the Cache Test and MxM programs on the
MSP430F2619 (Fig. 6), the null data point for the mitigated
software is an order of magnitude smaller than the measured
cross section for the unmitigated software. In one case, AES
on the Zynq (Fig. 7), the mitigated version of the software
decreased the cross section by four orders of magnitude. For
most of the parts and programs, there is an improvement when
Trikaya is applied to the program. In the mitigated MxM code
nearly two million errors in the result matrix are masked and
only 41 failures were observed. The Cache Test has been
difficult to mitigate in the past, because it spans all available
SRAM. With the Trikaya technique the mitigated version for
all of the components completed testing with no errors.

In some cases, such as the MSP430FR5739 in Fig. 6 and the
Zynq in Fig. 7, the null data points for the mitigated software
cross sections are plotted at larger values than the unmitigated
software. While it is possible that the cross section is larger
than the unmitigated software, it is also possible that more
testing would have provided a null data point that is smaller
than the unmitigated software.

7

B. Crashes
Previously, it seemed as if mitigating the software helped

reduce the SEFI cross section on DSPs [4], although we could
never explain these results. These results are not reproducible
on microcontrollers. We did find that our test methodology
did decrease crashing for the Zynq component, though. The
Latin Square test methodology causes the systems to have
the code refreshed and the component to be reset at regular
intervals. We have found this process causes the Zynq to crash
less frequently, possibly because SEUs cannot accumulate in
critical code for too long. The Xilinx ARM is very sensitive
to crashes, which might be because it uses SRAM to store the
code and the data. For this component the SEFI states make it
difficult to test and it frequently takes hands-on intervention to
reset the component after a crash. The SEFI cross section for
the Zynq ARM is approximately 2× 10−9cm2, which means
that crashes occur every five to ten minutes at LANSCE. Using
the Latin Square test methodology, the Xilinx ARM is able
to operate without intervention for 10-15 hours, which is a
decrease of the SEFI cross section by two orders of magnitude.

While not a perfect solution, the process of resetting the
system to a known good state decreases the chance of unan-
ticipated crashes and allows the users to determine when to
schedule the resets. Without more information about what is
causing the crashes, there is currently no better solution for
mitigating the problem.

C. Root Cause Analysis
Most of the calculation failures observed are from SEUs in

the data variables. Three of the codes, Cache Test, Qsort and
MxM have memory-bound calculations, where the instructions
are dominated by loads and stores. Qsort is heavily dependent
on memory movement, and the only logic instructions compare
values. On the MSP430F2619 there is one failure that heavily
skewed the Qsort results. In one test run 72 errors occurred at
one time during a single execution of the code. Many of the
errors were corrected by Trikaya, but 12 were not correctable.
This problem did not repeat in the Qsort test on this component
or any of the other components.

The AES code is the only logic-bound code that we tested.
The amount of input and output data is only five 128-bit
variables and the code is dominated on logic transformations
of these variables. Because this code has a large ratio of logic
instructions to memory instructions, it highlights SETs. Only
two components had errors in AES. In the flash-based MSP430
there are 16 errors in one component and all of those errors
occurred in the same computation. The Xilinx ARM had many
failures in the AES code. All of these errors are related to
the test vectors being stored in SRAM. Because there is no
SEU-resistant memory on chip to store the test vectors, the test
vectors have a large SEU cross section. It should be noted that
mitigation of the test vectors with TMR is able to suppress all
of these SEUs and no errors are observed on this component
for the mitigated AES code.

VII. CONCLUSIONS

Commercially available microprocessors have many advan-
tages for modern spacecraft, as the components are smaller

and less expensive than their radiation-hardened counterpoints.
SEEs can cause these microprocessors to fail in harsh radiation
environments, including incorrect calculations and crashes.
The Trikaya technique is designed to mask the effect of
SEUs and SETs in microprocessor systems. Test results that
show that Trikaya can be effective in decreasing corrupted
computations by five to ten times.

REFERENCES

[1] H. Quinn, T. Fairbanks, J. L. Tripp, G. Duran, and B. Lopez, “Single-
event effects in low-cost, low-power microprocessors,” in Proceedings
of the IEEE Radiation Effects Data Workshop, Dec. 2014.

[2] H. Quinn, T. Fairbanks, J. L. Tripp, G. Duran, and B. Lopez, “Radiation
effects in low-cost, low-power microprocessors,” in Proceedings of the
Hardened Electronics and Radiation Technology Technical Interchange
Meeting, Apr. 2015.

[3] T. Fairbanks, H. Quinn, J. Tripp, J. Michel, A. Warniment, and
N. Dallmann, “Compendium of TID, neutron, proton and heavy ion
testing of satellite electronics for Los Alamos National Laboratory,”
in 2013 IEEE Radiation Effects Data Workshop (REDW), 2013,
10.1109/REDW.2013.6658191.

[4] H. Quinn, T. Fairbanks, J. L. Tripp, and A. Manuzzato, “The reliability
of software algorithms and software-based mitigation techniques in dig-
ital signal processors,” in 2013 IEEE Radiation Effects Data Workshop
(REDW), 2013, 10.1109/REDW.2013.6658218.

[5] A. Suresh and J. Sartori, “Automated algorithmic error resilience based
on outlier detection,” accepted to IEEE Micro, 2015.

[6] S. Venkataramani, S. Chakradhar, K. Roy, and A. Raghunathan, “Com-
puting approximately, and efficiently,” in the proceedings of Design,
Automation Test in Europe Conference Exhibition (DATE), 2015, March
2015, pp. 748–751.

[7] B. Grigorian and G. Reinman, “Dynamically adaptive and reliable
approximate computing using light-weight error analysis,” in the pro-
ceedings of the 2014 NASA/ESA Conference on Adaptive Hardware and
Systems (AHS), July 2014, pp. 248–255.

[8] K.-H. Huang and J. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transactions on Computers, Vol. C-33, No. 6,
pp. 518–528, June 1984.

[9] J. Sloan, R. Kumar, and G. Bronevetsky, “Algorithmic approaches to low
overhead fault detection for sparse linear algebra,” in the proceedings
of the 42nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), June 2012, pp. 1–12.

[10] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra,
“Algorithm-based fault tolerance for dense matrix factorizations,”
SIGPLAN Not., Vol. 47, No. 8, pp. 225–234, Feb. 2012. [Online].
Available: http://doi.acm.org/10.1145/2370036.2145845

[11] J. Camara, R. de Lemos, N. Laranjeiro, R. Ventura, and M. Vieira,
“Robustness-driven resilience evaluation of self-adaptive software sys-
tems,” accepted to IEEE Transactions on Dependable and Secure
Computing, 2015.

[12] C. L. McGhan, R. M. Murray, R. Serra, M. D. Ingham, M. Ono,
T. Estlin, and B. C. Williams, “A risk-aware architecture for
resilient spacecraft operations,” in the proceedings of the IEEE
Aerospace Conference, March 2015, pp. 1–15. [Online]. Available:
10.1109/AERO.2015.7119035

[13] O. Goloubeva, M. Rebaudengo, M. Reorda, and M. Violante, “Soft-
error detection using control flow assertions,” in proceedings of the
IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems, Nov 2003, pp. 581–588.

[14] P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, M. Sonza Reorda,
and M. Violante, “Experimentally evaluating an automatic approach for
generating safety-critical software with respect to transient errors,” IEEE
Transactions on Nuclear Science, Vol. 47, No. 6, pp. 2231–2236, Dec
2000.

[15] N. Oh, P. Shirvani, and E. McCluskey, “Control-flow checking by
software signatures,” IEEE Transactions on Reliability, Vol. 51, No. 1,
pp. 111–122, Mar 2002.

[16] H. Wang, H. Wang, and Z. Jin, “Bipartite graph-based control
flow checking for cots-based small satellites,” Chinese Journal of
Aeronautics, Vol. 28, No. 3, pp. 883 – 893, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1000936115000734

8

[17] S. Asghari, H. Taheri, H. Pedram, and O. Kaynak, “Software-based
control flow checking against transient faults in industrial environments,”
IEEE Transactions on Industrial Informatics, Vol. 10, No. 1, pp. 481–
490, Feb 2014.

[18] J. Azambuja, F. Sousa, L. Rosa, and F. Kastensmidt, “The limitations of
software signature and basic block sizing in soft error fault coverage,”
in 11th Latin American Test Workshop (LATW), March 2010, pp. 1–8.
[Online]. Available: 10.1109/LATW.2010.5550346

[19] “The LLVM compiler infrastructure,” Last accessed 6/2015. [Online].
Available: http://llvm.org/

[20] “LLVM language reference manual,” Last accessed 9/2015. [Online].
Available: onwebathttp://llvm.org/docs/LangRef.html

[21] H. Quinn, W. H. Robinson, P. Rech, M. Aguirre, A. Barnard, M. Deso-
gus, L. Entrena, M. Garcia-Valderas, S. M. Guertin, D. Kaeli, F. L. Kas-
tensmidt, B. T. Kiddie, A. Sanchez-Clemente, M. S. Reorda, L. Sterpone,
and M. Wirthlin, “The use of benchmarks for high-reliability systems,”
submitted to the IEEE Transactions on Nuclear Science, 2015.

[22] B.-S. Wang, X.-J. Wang, and L.-K. Gong, “The construction of a
Williams design and randomization in cross-over clinical trials using
SAS,” Journal of Statistical Software, Code Snippets, Vol. 29, No. 1,
pp. 1–10, 2 2009. [Online]. Available: http://www.jstatsoft.org/v29/c01

